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Extremal-point densities of interface fluctuations in a quenched random medium
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We give a number of exact, analytical results for the stochastic dynamics of the density of local extrema
(minima and maximpof linear Langevin equations and solid-on-solid lattice growth models driven by spa-
tially quenched random noise. Such models can describe nonequilibrium surface fluctuations in a spatially
guenched random medium, diffusion in a random catalytic environment, and polymers in a random medium. In
spite of the nonuniversal character for the quantities studied, their behavior against the variation of the micro-
scopic length scale can present generic features, characteristic of the macroscopic observables of the system.

PACS numbsgfs): 05.40—a, 89.80+h, 02.70.Lq, 68.35.Ct

I. INTRODUCTION II. LINEAR MODEL ON THE LATTICE

. . In this section we focus on the discrete one-dimensional
Recently Toroczkai and co-workefs—3] studied the dy- model on the lattice. Let us consider a one-dimensional sub-

namicg of macr'oscopica'llly rough surfaces vi_a investigating, o consisting of lattice sites, with periodic boundary
an intriguing microscopic quantity: the density of extrema qngitions. For simplicity we take the lattice constant to be

(minima) and its finite-size effects. They derived a number i, \ve study the discretized linear Langevin equation of
of analytical results about these quantities for a large class qf¢ torm

nonequilibrium surface fluctuations described by linear

Langevin equations, and solid-on-sol(iOS lattice-growth ahi(t) = vV2h,(t) — kV*hi(t) + (1), (1)

models. They showed that in spite of the nonuniversal char-

acter of the quantities studied, their behavior against thevhere V2 is the discrete Laplacian operator, i_a?fl.

variation of the microscopic length scales can present generiEfj+1+fj_l—2 f;, applied to any lattice functiofi;, and

features, characteristic of the macroscopic observables of thg (t) is a spatially quenched Gaussian with covariance

system. In addition to surface growth applications, the results

can be used to solve the asymptotic scalability problem of (mi(t)m;(t'))=2D6 ;. 2

massively parallel algorithms for discrete event simulation

[2-5], which are extensively used in Monte Carlo—type Stability requires’=0 and«=0 (as a matter of fact, on the

simulations on parallel architectures. The linear Langevirlattice it is enough to have>0 and x=—v/2) [11-14.

equations they studied were driven by Gaussian white nois8tarting from a completely flat initial condition, the interface

7i(t) at latice sitei at time t, with (#(t)»;(t"))  roughens until the correlation lengffreaches the size of the

=2Dg; j6(t—t"), whereD is the diffusion constant. systemé~L, when the roughening saturates over into a
Another interesting type of noise is that of a spatially steady-state regime. The process of kinetic roughening is

quenched random noise, withy;(t) ;(t"))=2D&; ;. Such  controled by the intrinsic length scal{ «/v) [11-14. Be-

noise can describe a growing interface in a quenched randofow this length scale the roughening is dominated by the

medium, diffusion in a random catalytic environment, andsurface diffusion or Mulling 15,16 term (the fourth-order

polymers in a random mediuf—10]. Using the technique operatoy but above it, is characterized by the surface tension

of Toroczkai[ 1], we have derived exact analytical results for or Edwards-Wilkinsorf17] term.

the density of extremal points for this type of noise. Similar Introducing the discrete Fourier transform

to the case of white noise, we also find generic features char-

acteristic of macroscopic observables of the system. In fact, i ki T

since our results for the quenched noise are qualitatively h=ZO e "h;, szv n=012..L-1. (3

similar to those of Gaussian white noise, this shows that the a

density of I(_)cal minima is robust _With respect to these t_WOEquation(l) can be transformed into

types of noises. In Sec. Il we will study a discrete lattice

model. In Sec. lll we will study the continuum model. Sec- Tty —

tion 1V is the conclusion. g o) =—{2v[1~cogk)]

+ar{1=cod ) (D) +7(t), (4
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The equal time structure fact&(k,t) is defined as is finite for all finitet.
o The slope-slope correlation function is given by
S"(K,t) L 8k k' ymodzm,0= ity (1)) (6) L1
é 1 @mniL)l o 270
Using Eq.(4), we find CL(I)E<¢i¢i+I>=Er]§=:l e SN (18
2
S(k,t)=2D[L} [1—e MWt2 (7)  Where the summation starts mt=1, since then=0 term is
A (k) zero. This function can be calculated using the Poisson sum-

mation formula 18
where 3[18]

B
A(k)=[1-cosk)J{2v+4x{1-cogk)]}.  (8) > f(n)=%[f(a)+f(ﬂ)]+fﬁf(x)dx
In the limitt—oco, we have the steady state-structure function

+22 Jde f(x)cog2mmx). (19
m=1 Ja

2
S'(k)=limS"(k,t)= b

MR ©

t—oo

We find that
We are interested in the density of local minima for the b b
surface described by E@4). The operator which measures Co() = _[ D+ 1ga(1)+ — )+ 0ol —1
this quantity is[1] c(h - g2(h)+1g5(l) 1_bL[gz( )+92(—D]
L

L
u=%_21 ®(hi_1—h)@(h ,—h)). (10 FLapryzl9s(D s~ D]
L
IIn telrm§ 'of the local slopesp;=h; . ;—h;, the density of +1 1E—bL[gg(l)—g3(—l)]], (20
ocal minima is
e where
U= L& O(=¢i-100(4). (D a(l)= T b 2v(v+4K) = \v(v+dK)— 12 21
2 — A 1l
Due to translational invariance, the steady-state average of 2K ”5/2\/;(V+4K)3/2
the local minima is (U)=(O(—¢;_1)O(¢))=(O - b!
go—rrﬁl)@(cﬁz)) In Ref. [1] it was shown thagu) has the ga()=— . P TAR” (22
1 v 4k)—
(u)= ﬁarcco%tﬁ;??). (12 b=1- V(VJ;—KK)V< 1. (23

We will first find the steady-state structure factor for theln the limit L—o, we can neglect the terms that vanish
slopes. Since exponentially withL and we have

d=(1—e MRy, (13 Cf(l)=%[gz(|)+|93(|)]- (24)

it follows that S?(k) =2[ 1— cosk)]S'(k). Therefore we have
Substituting the expressions fgg(l) andgs(l), we find

4D
D(Kk) = T EERTRY
S (k) [1_C01k)]{21/+4K[1_COik)]}2. (14) C?(l) _ b _ v+2Kk— V(V+4K) (25)
clo) 1-»% 2k(1-0%%
This expression is divergent &t=0. However, because of
the periodic boundary conditiom = hg, it follows that Therefore the average density of local minima is given by
~ L1 1 v+2k—+\v(v+4k)
¢k=O:i:20 ¢i=hy;—hg+hy—hy (u)=zarcco 2x(1— 79 : (26)
+hs—h,+---+h —hy=0, (15)  We can see that the average density of minina vanishes for
v=0, i.e., for the pure Mullins or diffusion case. But for
S¢(k:0):<(g§k:o)2>:0_ (16) finite v, the average density of minina is finite. The pure

Edwards-Wilkinson or surface tension case can be obtained
Of course the equal-time structure facft(k,t) given by by taking the limit k—0 in the last expression. It gives
(u)=arccos(0)/(Zr)=1/4. In order to check this result one
S?(k,t)=S?(k)[1—e W12 (170 can go back to the slope-slope correlation
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op = gl (2m/L)l S oD 1 ) KO .
— b)=— —exp— t)]°.
" Z - (27) (k)= W—z[ p(—v[k|t)]
2|1-co T
The extremal-point density is defined through the functions
Using the Poisson summation formula again we find 1 (L (?Zh A+l [ h
S Cq(L,t)= < f dx|— 5(5)>, (37)
cl()=—(1-1). (28
v L [h\9*T [oh| [d?h
) gt {2 Lo 22" B0 2], o
Therefore, for the pure Edwards-Wilkinson case, the average Ix* IX IX

density of local minima is
where® (x) is the Heavyside step function agd>0 can be

1 conceived as an inverse temperature. The lgrit0* gives
=5 5 arccog0)= . (29 the stochastic average of the density of nondegenerate ex-
trema and minima,

1 Cci(1)
(u)= 5, arcco cro)|”

This agrees with the result obtained by taking the limit

Ill. EXTREMAL-POINT DENSITIES ON THE and the limitg=1 gives the stochastic averages of the mean
CONTINUUM curvature at extrema and
_ We are |nt.erested in the following type of linear stochas- Ly — UL (L)
tic equations: K oxi=— K= (40)

cLy oW

B VY ), (30

ot These functions can be written in terms of the function

dm(L,t) defined as
where v, z>0 andxe[0.L] with initial condition h(x,0)
=0 for all x. The Edwards-Wilkinson and Mullins cases cor- _ m
respond toz=2 and z=4, respectively.n(x) is a time- $m(L0) Ek [KI™S(kb), (41)
independent quenched noise term with zero méa(x))

=0, and covariance 2(0-2)12 L,t)]a+2r2
Lo- r(g )[¢4( D,
(n(X)n(x")y=2D8(x—x"). (31 Vepo(L,t)
We have also chosen periodic boundary conditidvs Cq(L,t)=2U4(L,1), (43
+nL,t)=h(x,t) and »(x+nL)= n(x,t) for all integern.
Introducing the Fourier transform wher&=2zn/L, UL da(L 1) ”
n=...—2-1,01.2,..., ULh=5— Sr(LD) (44)
f(x)=>, T(k)e'kx ~f(k)=le dx f(x)e~ %, (32) — — ™
X ’ L) ’ K(LD=Kmin(L,1) =\ 5Va(L.D). (45
the solution forh has the form Substituting the expression f&(k,t), the functiong(L,t)
. can be calculated with the result
E(k.t)=J’0dt’ exd — v[k[*(t—t")]7(k), (33 oD L2 o\ m-2z
dm(L )= —rz ( ) {1—exd —(&22mn/L)7]}?,
2D
(n(K)m(K)= T8 i (34) 40

wherea is the lattice spacing angl= (vt)*? is the correlation

Using these equations, the equal-time, two-point correlatiofength. In the future we will drop the=0 term from Eq.
can be calculated as (46) since it is zero for all finitet.

O, —k/ A. Steady-state regime

~ ~ 2D
<h(k,t)h(k’,t)>=Tw[l—exp(—ﬂﬂzt)]z ,
v Fort—o or é{—« the steady-state functions are

= S(k,t)ékykr , (35) 2D (2 m—2zL/2a
L,o0)= — nm-2z, 4
whereS(k,t) is the structure function given by P ) ;rL( L ) ,121 (7
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The summation can be carried out. The critical valueg of

B S\ 52202 | ~[z-(32)]

are given bym—2z=—1: z=2 for m=2 andz=3 for m U(L,»)=(27) L5272 — .

=4. We have to consider the following five separate cases. a V(5-22){(2z~2)
(i) z>3%. This case includes the case of the pure Mullins (56)

term with z=4. In this case all quantities are convergent a

S . .
a—0* and we have For z=2, the last expression gives

al2 — 1 1 1
- d U(L,)= ~ . z=2
Ualbo)= 7) F(z“) 202) \La \20(2)
X(ZW)_(Z_Z)qL_q[(s,z)_z]_l[§(22—4)](q+1)/2 for La~const. Therefore, for the pure Edwards-Wilkinson
[£(2z—2)]Y2% casez=2 and the density of local minima is a constant, in

agreement with the result of the discrete lattice model, Egs.
(26) and(29). The density of minima vanishes with the sys-
tem size with exponent (2-3)/2. Also the dependence of
T c0)= 1 [i(2z-4) (49) Uq on L now decouples frong. The mean curvature is still
(L) = L V¢(2z-2) given by the expressio(b3) of case(ii).
(iv) z=2. In this case bothp, and ¢, diverge asa—0,
. T i 3
— _ -1 ~(z-2) (52 (7D (22— 4) but ¢, diverges only logarithmically. By setting=5 in Eq.
K(L,)=v"(2m) L 7D{(2z-4), (50 (55) in case(iii ) and replacing the Rieman-zeta functiohy
. . . . +

where{(x) is the Rieman-zeta function. This shows that the[ln(L/Za) C], one has
density of minima goes to zero as 1/L. Therefore for the pure

(48)

q/2 q+1
Mullins term, withz= 4, the density of local minina vanishes |, (L oo):(_) T 9+1 z) 1
for large L in the steady state. The mean curvature diverges T 2 a L '
asL(?279)/72 V2 |n(2— +C
(i) z=32. In this case¢, is marginal while ¢, is still a (57)
convergent ag—0" and we have
4D q/2 q — ™ 1
| = ) U(L,o)=|— . 58
Uq(L,OO)—(VZ) r(2+1) (Le)=| 7 3 (58)
v2\/Inf —|+C
L (q+1)12 2a
1 In2—+C
—q/2_ a The density of minima vanishes logarthmically with The
X(27) , (B)
L V(3) dependence ofl; on L decouples frong. The mean curva-
ture is the same as that of ca$e since it depends only on
L b4
1 Inﬁ +C (v) 1<z<32. In this case botlp, and ¢, are divergent as
ULe)== V ——m—, 52 a>0,
(Lee)=1r 73 (52)
4D q/2 q
o 2D L Uq(L,m)=<7) r §+1
K(L,OO): 7 In2—a+C. (53)

7T) (5—-2z)(q/2)+1 /3_22

«2m T G
In this case the density of minima goes to zero ds bt a (5-22)

with a logarithmic correction. The mean curvature diverges (59
logarithmically.
(i) $<z<3. This case includes the case of the pure _ 1 [3-2z2
Edwards-Wilkinson term, witlz=2. In this casep, is still U(L,»o)= 2a V5-25 (60)
convergent aga— 0", but ¢, is divergent in this limit, a z
5_25 The density of the minima is a constant, independent of the
ba(L,0)= —5—— T , (54) system size. The mean curvature is _stlll given by @@) of .
mre(5—-2z) | a case(ii). Only in this case the density of local minima di-

verges asa— 0.

q/2
q _ _
_ a [2+(q+1/2)—z]
Ug(L,=) (,,2(5_22)> F(z +1](2m) B. Scaling regime
(5—22)[(q+1)/2] [2-(32] For finite time, the functionp,(L,t) defined in Eq.(46)
T L . ! .
x| = , (55  can be calculated by using the Poisson summation formula.
a J(5—22)((22—2) The result is
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m-2z+1 Just as in the steady-state case, we have to distinguish the
five cases depending on the value zoWith respect to the
critical values; and 3. For the sake of simplicity of writing,

w

_ D 1
S~ <

Tv-m—2z+1

2 we will sometimes omit the arguments Bf, andF,,,.
- —2g‘““‘ZZ“);(l—2‘(”“”1)’2) (i) z>3. This case includes the case of the pure Mullins
m term. In this case we have
(—m_ZH 1—Em(E,£” (61) P .. i
§la m= T m? (2z-m—1)(m+1-2)
for z<(m+1)/2, where m+1
X(l_z(m+1z)IZ)F( ), (67)
. (L g z z
m¢ta (1_2(mz+l)/2)r(m_22+1 Uq(L,t)
z
q
wéla 2 _\2 Dz 4 (22-5)(q/2)— 1
x 2 JO XM~22 cog Lnx/€)(1— e ¥)%dx, R P ﬁ) g
r 5 (q+1)/2
(62) F(E)
. . . . __n(z-5)lz
Using the property of thé&' function, this can be written as X i 4(1-2 )(22_5)(5_2)(1_ £l
£ L& (@z-m-1)(z-m-1) [ (2z—3)(3-2) 12
" ¢'a —(m—z+1)/z m+1 X 3 ! (68)
z(1-2 7 — 21"(5)(1_2(2—3)/2)(1_E2)
mwéla 2 U L.t
X f XM 22 cogLnx/£)(1—e X)2dx. (L)
n=1J0
(63 5 12
- . L : 2(1—2(2_5)’2)1“(—)(22—3)(3—2)(1—E4)
The oscillating terms irk,,, will give finite-size corrections, 1 z
as long ad /¢>1. C2mé 23y 3 ’
The case 2=m+1 can also be calculated with the result (1-2 )r 7 (22-5)(5-2)(1-Ey)
méla dx , 2 z (69)
f —(1—eX)2=In(W—§)——Ei (™€
0 X a z a 5
Dzl = |(1-2@F97)(1-E,)
e o T4 S s K(L,t)= : g2 (502
z- a z' ) ' 12(2z2—5)(5—2) :
(70)

where Eik) is the exponential integral function ari@lis a
constant. For large, the exponential integral function van-
ishes exponentially fadt19]: Ei(x)~—e */x, and can be
neglected. Therefore we have

Therefore in this casdJy(L,t)~t"2-422=5)1z y(L 1)
~t Y2 and K(L,t)~t(22’%)’Z for L/&>1. In the Mullins
case, withz=4, the density of local minima decreases in
time ast~ %2 and vanishes after very long time.

(i) z=3. In this casep, is still given as in casé) but ¢,

L~ —s|in 28]+ & is given b
Pl ,t)~ﬁz n— /77 g y
D (L ¢ m+1 baL= |1 7T§+C)+ o =t T
4 1 =_2 n_ - _2 4 _l_ 1
ﬁFm E’E , ZE (65) TV a z) mv ¢'a
q
where r §+1 2D\ W2 gg|arbre
o ULty =———| — In—
L ¢ ma -, 2o (k) 2mé 7TV2) a
Fml 7.2 =22 X"~ cogLnx/£)(1—e ¥)2dx.
n=1J0 -1 (q+1)/2
¢a mé 2C
(66) 1+{In—=| |[—+F,
a 5
Thus in the scaling limit, the temporal behavior @f,(L,t) , (72

is a logarithmic time dependence plus a constant, as long as \/2(1—2‘1’5)1“ E (1-E,)
L/es1, 5 2
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-1/2¢C 172 (i) 3<z<3. This case includes the case of the pure
2] 1+ In? ?+F4 Edwards-Wilkinson term witlz= 2,
U(L7t):277_§ n? 6 y Lt 2D 1— 2(2—3)/2 3 e ) 0y 3
2(1-2" 1’5>r< (1-E,) Pl V=2 o ayag | | z) (1T EJE
(73 (75

1 (= 5=z 2p
2 D 3 m¢| "t 2C 4L )= 2 ——
K(LL)=\/z=|In—]{1+|In—| | —+F4];. 5-27 Tz

2v a a 5

(74) X[l_z(52)Z]§(SZZ)F(¥)(1_E4)’

One can observe the logarithmic correction for the quantities
Ug, U, andK. (76)

_ 1 q @2 [( +1)/2](7T SHaruEieTz —(2z-3)/2 (22-3)(3-2) v
Uq(L,t)—Zr(E‘f‘l)(m) (5—2z)t4d E) £ 2(1_2—(3—2)/Z)F(3/Z)(1_E2)
2 5-2z —27 (g+1)/2
X 1—;(77—5) (5-2z)[1—-2" 65~ “]r( )(1 E.) , (77)
T (22-3)(3-2) B i T
! 2 Al 3 a
2(5-2z)(1-2"G Z)’Z)F(E)
5-2z 1/2
X 1—(77—5) 5 (6-22)(1-27¢~ Z>’Z)F( )(1 E4)} (1-E) "2 (78)
_ \/T m\ (524 3 (527 s v
KLY=V352537 2 { - ( - 7g) -2 1(5-22)(1—E,) (79)

From Eq.(78) one can see that in the case of the pure Edwards-Wilkinson termzwigh the density of local minima goes
as (¢a) Y2 After a long time,é—, a—0, with £a—cons. This agrees with the steady-state and discrete lattice cases.

(iv) z=3,
wé 2C

ba(L )= —5|In—+ = +F;|, (80)

D (w\? 2D o (4)
baL)=5—73|7 —wzzgz(l—Z r 3/(1~Ea), (81)

q 8 [4\( a\? (q+1)/2
T2+ b ey ey e _1,2{1—51“(5)(77—&) (1-27"¥)(1-Ey)
(0= r) (; a J ac ’ #2
a 3
38 4 a\? / (q+1)/2
_ Y _ 943 _

U(L,t)=—|In— , (83

4a a “1/2¢C

——
3 2

In—
a

o
K(L,t) is given by the same equation as in case.
(v) 1<z<%. In this caseg, is given by Eq.(76) of case(iii) and ¢, is given by
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T 3-2z
baL)=—5 35 |5 —m[l—z (37271767 22)F( )(1 Ez), (84)
q a 5-2z 27 / (q+1)/2
5—
r E+1 oD | 92 327 o\ (5-22(a2)+1 1—(77—5) = (1 2—( Z)Z)I‘( )(1 E4)
Uq(Lt)= — — | =
b 2m WVZ) (5—22)9"* ) \/ a\3?% 2z N
1-|— —((1-2"""99r -|(1-E
e 3_2( T2 2)
(89
5-2z 27 5
\/E ] e ae
U(L,t .
(L= 5-2z 3-2z 95 . 3
- w_g 3512 -2 ~|(1-E)
|
IV. CONCLUSION state, for large system size, the density of local minima is

always given by the isotropic valugi)= %, as long as is

not strictly zero. Also, since the results of the quenched ran-
dom noise is qualitatively similar to those of the Gaussian
White nois€ 1], this shows that the density of local minima is
8bust with respect to these two types of noises.

We have studied the density of local minima in linear
Langevin equations driven by spatially quenched random
noise. In spite of the nonuniversal character of the quantities
studied, their behavior against the variation of the micro-
scopic length scales can present generic features. We fin
that the density of local minima vanishes in the limit of a
large system size in the case of the pure Mullins term but is
finite in the case of the pure Edwards-Wilkinson term, or  This research was supported by the Department of Energy
when both term are present. For length scales larger thamder Grant No. DE-FG0297ER25343. P.M.L. wants to
V(x/v), the roughening is dominated by the Edwards-thank the Physics Department, Essen University, where part
Wilkinson term[17]. Therefore it follows that in the steady of this work was done, for their hospitality.
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