
PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5
Extremal-point densities of interface fluctuations in a quenched random medium

Pui-Man Lam*
Fachbereich Physik, Universita¨t-Gesamthochschule Essen, D-45117 Essen, Germany

Sovirith Tan†

Physics Department, Southern University, Baton Rouge, Louisiana 70813
~Received 3 April 2000!

We give a number of exact, analytical results for the stochastic dynamics of the density of local extrema
~minima and maxima! of linear Langevin equations and solid-on-solid lattice growth models driven by spa-
tially quenched random noise. Such models can describe nonequilibrium surface fluctuations in a spatially
quenched random medium, diffusion in a random catalytic environment, and polymers in a random medium. In
spite of the nonuniversal character for the quantities studied, their behavior against the variation of the micro-
scopic length scale can present generic features, characteristic of the macroscopic observables of the system.

PACS number~s!: 05.40.2a, 89.80.1h, 02.70.Lq, 68.35.Ct
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I. INTRODUCTION

Recently Toroczkai and co-workers@1–3# studied the dy-
namics of macroscopically rough surfaces via investigat
an intriguing microscopic quantity: the density of extrem
~minima! and its finite-size effects. They derived a numb
of analytical results about these quantities for a large clas
nonequilibrium surface fluctuations described by line
Langevin equations, and solid-on-solid~SOS! lattice-growth
models. They showed that in spite of the nonuniversal ch
acter of the quantities studied, their behavior against
variation of the microscopic length scales can present gen
features, characteristic of the macroscopic observables o
system. In addition to surface growth applications, the res
can be used to solve the asymptotic scalability problem
massively parallel algorithms for discrete event simulat
@2–5#, which are extensively used in Monte Carlo–ty
simulations on parallel architectures. The linear Lange
equations they studied were driven by Gaussian white n
h i(t) at lattice site i at time t, with ^h i(t)h j (t8)&
52Dd i , jd(t2t8), whereD is the diffusion constant.

Another interesting type of noise is that of a spatia
quenched random noise, with^h i(t)h j (t8)&52Dd i , j . Such
noise can describe a growing interface in a quenched ran
medium, diffusion in a random catalytic environment, a
polymers in a random medium@6–10#. Using the technique
of Toroczkai@1#, we have derived exact analytical results f
the density of extremal points for this type of noise. Simi
to the case of white noise, we also find generic features c
acteristic of macroscopic observables of the system. In f
since our results for the quenched noise are qualitativ
similar to those of Gaussian white noise, this shows that
density of local minima is robust with respect to these t
types of noises. In Sec. II we will study a discrete latti
model. In Sec. III we will study the continuum model. Se
tion IV is the conclusion.

*On leave from Physics Dept., Southern University, Baton Rou
LA. Email address: pmlam@grant.phys.subr.edu

†Email address: tan@grant.phys.subr.edu
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II. LINEAR MODEL ON THE LATTICE

In this section we focus on the discrete one-dimensio
model on the lattice. Let us consider a one-dimensional s
strate consisting ofL lattice sites, with periodic boundar
conditions. For simplicity we take the lattice constant to
unity. We study the discretized linear Langevin equation
the form

] thi~ t !5n¹2hi~ t !2k¹4hi~ t !1h i~ t !, ~1!

where ¹2 is the discrete Laplacian operator, i.e.,¹2f j
5 f j 111 f j 2122 f j , applied to any lattice functionf j , and
h i(t) is a spatially quenched Gaussian with covariance

^h i~ t !h j~ t8!&52Dd i , j . ~2!

Stability requiresn>0 andk>0 ~as a matter of fact, on the
lattice it is enough to haven.0 and k>2n/2) @11–14#.
Starting from a completely flat initial condition, the interfac
roughens until the correlation lengthj reaches the size of th
system j'L, when the roughening saturates over into
steady-state regime. The process of kinetic roughening
controled by the intrinsic length scaleA(k/n) @11–14#. Be-
low this length scale the roughening is dominated by
surface diffusion or Mullins@15,16# term ~the fourth-order
operator! but above it, is characterized by the surface tens
or Edwards-Wilkinson@17# term.

Introducing the discrete Fourier transform

h̃5 (
j 50

L21

e2 ik jhj , k5
2pn

L
, n50,1,2,...,L21. ~3!

Equation~1! can be transformed into

] th̃k~ t !52$2n@12cos~k!#

14k@12cos~k!#2%h̃k~ t !1h̃k~ t !, ~4!

with

^h̃k~ t !h̃k8~ t8!&52DLd~k1k8!mod2p,0 . ~5!

e,
6246 ©2000 The American Physical Society
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PRE 62 6247EXTREMAL-POINT DENSITIES OF INTERFACE . . .
The equal time structure factorS(k,t) is defined as

Sh~k,t !Ld~k1k8!mod2p,0[^h̃k~ t !h̃k8~ t !&. ~6!

Using Eq.~4!, we find

S~k,t !52DF 1

l~k!G
2

@12e2l~k!t #2 ~7!

where

l~k!5@12cos~k!#$2n14k@12cos~k!#%. ~8!

In the limit t→`, we have the steady state-structure funct

Sh~k![ lim
t→`

Sh~k,t !5
2D

l~k!2 . ~9!

We are interested in the density of local minima for t
surface described by Eq.~4!. The operator which measure
this quantity is@1#

u5
1

L (
i 51

L

Q~hi 212hi !Q~hi 112hi !. ~10!

In terms of the local slopes,f i5hi 112hi , the density of
local minima is

u5
1

L (
i 51

L

Q~2f i 21!Q~f i !. ~11!

Due to translational invariance, the steady-state averag
the local minima is ^u&5^Q(2f i 21)Q(f i)&5^Q
(2f1)Q(f2)&. In Ref. @1# it was shown that̂ u& has the
form

^u&5
1

2p
arccosS ^f1f2&

^f1
2& D . ~12!

We will first find the steady-state structure factor for t
slopes. Since

f̃k5~12e2 ik!h̃k , ~13!

it follows thatSf(k)52@12cos(k)#Sh(k). Therefore we have

Sf~k!5
4D

@12cos~k!#$2n14k@12cos~k!#%2 . ~14!

This expression is divergent atk50. However, because o
the periodic boundary conditionhL5h0 , it follows that

f̃k505 (
i 50

L21

f i5h12h01h22h1

1h32h21¯1hL2h050, ~15!

Sf~k50!5^~f̃k50!2&50. ~16!

Of course the equal-time structure factorSf(k,t) given by

Sf~k,t !5Sf~k!@12e2l~k!t#2 ~17!
n

of

is finite for all finite t.
The slope-slope correlation function is given by

CL
f~ l ![^f if i 1 l&5

1

L (
n51

L21

ei ~2pn/L !lSfS 2pn

L D , ~18!

where the summation starts atn51, since then50 term is
zero. This function can be calculated using the Poisson s
mation formula@18#

(
a

b

f ~n!5
1

2
@ f ~a!1 f ~b!#1E

a

b

f ~x!dx

12 (
m51

` E
a

b

dx f~x!cos~2pmx!. ~19!

We find that

CL
f~ l !5

D

p H g2~ l !1 lg3~ l !1
bL

12bL @g2~ l !1g2~2 l !#

1L
bL

~12bL!2 @g3~ l !1g3~2 l !#

1 l
bL

12bL @g3~ l !2g3~2 l !#J , ~20!

where

g2~ l !5
p

2k
blF2n~n14k!2An~n14k!2n3/2

n5/2An~n14k!3/2 G , ~21!

g3~ l !52
p

k

bl

n3~n14k!
, ~22!

b512
An~n14k!2n

2k
,1. ~23!

In the limit L→`, we can neglect the terms that vanis
exponentially withL and we have

CL
f~ l !5

D

p
@g2~ l !1 lg3~ l !#. ~24!

Substituting the expressions forg2( l ) andg3( l ), we find

CL
f~1!

CL
f~0!

5
b

12n3/25
n12k2An~n14k!

2k~12n3/2!
. ~25!

Therefore the average density of local minima is given b

^u&5
1

2p
arccosS n12k2An~n14k!

2k~12n3/2!
D . ~26!

We can see that the average density of minina vanishes
n50, i.e., for the pure Mullins or diffusion case. But fo
finite n, the average density of minina is finite. The pu
Edwards-Wilkinson or surface tension case can be obta
by taking the limit k→0 in the last expression. It give
^u&5arccos(0)/(2p)51/4. In order to check this result on
can go back to the slope-slope correlation
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CL
f~ l !5

2D

n2L (
n51

L21
ei ~2pn/L !l

H 2F12cosS 2pn

L D G J . ~27!

Using the Poisson summation formula again we find

CL
f~ l !5

D

n2 ~12 l !. ~28!

Therefore, for the pure Edwards-Wilkinson case, the aver
density of local minima is

^u&5
1

2p
arccosFCL

f~1!

CL
f~0!G5

1

2p
arccos~0!5

1

4
. ~29!

This agrees with the result obtained by taking the limitk
→0 in Eq. ~26!.

III. EXTREMAL-POINT DENSITIES ON THE
CONTINUUM

We are interested in the following type of linear stocha
tic equations:

]h

]t
52n~2¹2!z/2h1h~x!, ~30!

where n, z.0 and xP@0,L# with initial condition h(x,0)
50 for all x. The Edwards-Wilkinson and Mullins cases co
respond toz52 and z54, respectively.h(x) is a time-
independent quenched noise term with zero mean^h(x)&
50, and covariance

^h~x!h~x8!&52Dd~x2x8!. ~31!

We have also chosen periodic boundary conditionsh(x
1nL,t)5h(x,t) and h(x1nL)5h(x,t) for all integer n.
Introducing the Fourier transform wherek52pn/L,
n5...,22,21,0,1,2,... ,

f ~x!5(
k

f̃ ~k!eikx, f̃ ~k!5
1

L E
2L

L

dx f~x!e2 ikx, ~32!

the solution forh has the form

h̃~k,t !5E
0

t

dt8 exp@2nukuz~ t2t8!#h̃~k!, ~33!

^h~k!h~k8!&5
2D

L
dk,2k8 . ~34!

Using these equations, the equal-time, two-point correla
can be calculated as

^h̃~k,t !h̃~k8,t !&5
2D

L

dk,2k8
n2uku2z @12exp~2nukuzt !#2

5S~k,t !dk,k8 , ~35!

whereS(k,t) is the structure function given by
e

-

n

S~k,t !5
2D

L

1

n2uku2z @12exp~2nukuzt !#2. ~36!

The extremal-point density is defined through the functio

Cq~L,t !5K 1

L E
0

L

dxU]2h

]x2Uq11

dS ]h

]xD L , ~37!

Uq~L,t !5K 1

L E
0

L

dxS ]2h

]x2D q11

dS ]h

]xDQS ]2h

]x2D L , ~38!

whereQ(x) is the Heavyside step function andq.0 can be
conceived as an inverse temperature. The limitq→01 gives
the stochastic average of the density of nondegenerate
trema and minima,

C̄~L,t !5 lim
q→0

Cq~L,t !, Ū~L,t !5 lim
q→0

Uq~L,t !, ~39!

and the limitq51 gives the stochastic averages of the me
curvature at extrema and

K̄ext5
C1~L,t !

C̄~L,t !
, K̄min5

U1~L,t !

Ū~L,t !
~40!

These functions can be written in terms of the functi
fm(L,t) defined as

fm~L,t !5(
k

ukumS~k,t !, ~41!

Uq~L,t !5
2~q22!/2

p
GS q

2
11D @f4~L,t !#~q12!/2

Af2~L,t !
, ~42!

Cq~L,t !52Uq~L,t !, ~43!

Ū~L,t !5
1

2p
Af4~L,t !

f2~L,t !
, ~44!

K̄~L,t !5K̄min~L,t !5Ap

2
Af4~L,t !. ~45!

Substituting the expression forS(k,t), the functionfm(L,t)
can be calculated with the result

fm~L,t !5
2D

n2L (
n50

L/2a S 2pn

L D m22z

$12exp@2~j22pn/L !z#%2,

~46!

wherea is the lattice spacing andj5(nt)1/z is the correlation
length. In the future we will drop then50 term from Eq.
~46! since it is zero for all finitej.

A. Steady-state regime

For t→` or j→` the steady-state functions are

fm~L,`!5
2D

n2L S 2p

L D m22z

(
n51

L/2a

nm22z. ~47!
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The summation can be carried out. The critical values oz
are given bym22z521: z5 3

2 for m52 andz5 5
2 for m

54. We have to consider the following five separate cas
~i! z. 5

2 . This case includes the case of the pure Mull
term with z54. In this case all quantities are convergent
a→01 and we have

Uq~L,`!5S 4D

n2 D q/2

GS q

2
11D

3~2p!2~z22!qL2q@~5/2!2z#21
@z~2z24!#~q11!/2

@z~2z22!#1/2 ,

~48!

Ū~L,`!5
1

L
Az~2z24!

z~2z22!
, ~49!

K̄~L,`!5n21~2p!2~z22!Lz2~5/2!ApDz~2z24!, ~50!

wherez(x) is the Rieman-zeta function. This shows that t
density of minima goes to zero as 1/L. Therefore for the p
Mullins term, withz54, the density of local minina vanishe
for large L in the steady state. The mean curvature diver
asL (2z25)/2.

~ii ! z5 5
2 . In this casef4 is marginal whilef2 is still

convergent asa→01 and we have

Uq~L,`!5S 4D

n2 D q/2

GS q

2
11D

3~2p!2q/2
1

L

F ln
L

2a
1CG ~q11!/2

Az~3!
, ~51!

Ū~L,`!5
1

L
Aln

L

2a
1C

z~3!
, ~52!

K̄~L,`!5A2D

n2Aln
L

2a
1C. ~53!

In this case the density of minima goes to zero as 1/L, but
with a logarithmic correction. The mean curvature diverg
logarithmically.

~iii ! 3
2 ,z, 5

2 . This case includes the case of the pu
Edwards-Wilkinson term, withz52. In this casef2 is still
convergent asa→01, but f4 is divergent in this limit,

f4~L,`!5
D

pn2~522z! S p

a D 522z

, ~54!

Uq~L,`!5S 4D

n2~522z! D
q/2

GS q

2
11D ~2p!2@21~q11/2!2z#

3S p

a D ~522z!@~q11!/2# L2@z2~3/2!#

A~522z!z~2z22!
, ~55!
.
s
s

e

es

s

Ū~L,`!5~2p!2@~5/2!2z#S p

a D ~522z!/2 L2@z2~3/2!#

A~522z!z~2z22!
.

~56!

For z52, the last expression gives

Ū~L,`!5
1

A2z~2!

1

ALa
;

1

A2z~2!
, z52

for La'const. Therefore, for the pure Edwards-Wilkinso
casez52 and the density of local minima is a constant,
agreement with the result of the discrete lattice model, E
~26! and~29!. The density of minima vanishes with the sy
tem size with exponent (2z23)/2. Also the dependence o
Uq on L now decouples fromq. The mean curvature is stil
given by the expression~53! of case~ii !.

~iv! z5 3
2 . In this case bothf2 andf4 diverge asa→0,

but f2 diverges only logarithmically. By settingz5 3
2 in Eq.

~55! in case~iii ! and replacing the Rieman-zeta functionz by
@ ln(L/2a)1C#, one has

Uq~L,`!5S D

p
D q/2

GS q

2
11D S p

a
D q11 1

&AlnS L

2a
D 1C

,

~57!

Ū~L,`!5S p

a
D 1

&AlnS L

2a
D 1C

. ~58!

The density of minima vanishes logarthmically withL. The
dependence ofUq on L decouples fromq. The mean curva-
ture is the same as that of case~ii ! since it depends only on
f4 .

~v! 1,z, 3
2 . In this case bothf2 andf4 are divergent as

a→0,

Uq~L,`!5S 4D

n2 D q/2

GS q

2
11D

3~2p!2~q/2!21S p

a D ~522z!~q/2!11 A322z

~522z!~q11!/2 ,

~59!

Ū~L,`!5
1

2a
A322z

522z
. ~60!

The density of the minima is a constant, independent of
system size. The mean curvature is still given by Eq.~53! of
case~ii !. Only in this case the density of local minima d
verges asa→0.

B. Scaling regime

For finite time, the functionfm(L,t) defined in Eq.~46!
can be calculated by using the Poisson summation form
The result is
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fm~L,t !'
D

pn2

1

m22z11 S p

a D m22z11

2
D

pn2 j2~m22z11!
2

z
~1222~m2z11!/z!

3GS m221z

z D F12EmS L

j
,

j

a D G ~61!

for z,(m11)/2, where

EmS L

j
,
j

aD5
z

~1222~m2z11!/z!GS m22z11

z D
3 (

n51

` E
0

pj/a

xm22z cos~Lnx/j!~12e2xz
!2dx.

~62!

Using the property of theG function, this can be written as

EmS L

j
,
j

aD5
~2z2m21!~z2m21!

z~1222~m2z11!/z!GS m11

z D
3 (

n51

` E
0

pj/a

xm22z cos~Lnx/j!~12e2xz
!2dx.

~63!

The oscillating terms inEm will give finite-size corrections,
as long asL/j@1.

The case 2z5m11 can also be calculated with the resu

E
0

pj/a dx

x
~12e2xz

!25 lnS pj

a D2
2

z
EiF2S pj

a D zG
1

1

z
EiF22S pj

a D zG1
C

z
, ~64!

where Ei(x) is the exponential integral function andC is a
constant. For largex, the exponential integral function van
ishes exponentially fast@19#: Ei(x);2e2x/x, and can be
neglected. Therefore we have

fm~L,t !'
D

pn2 F lnS pj

a D1
C

z G
1

D

pn2 FmS L

j
,
j

aD , z5
m11

2
~65!

where

FmS L

j
,
j

aD52(
n51

` E
0

pj/a

xm22z cos~Lnx/j!~12e2xz
!2dx.

~66!

Thus in the scaling limit, the temporal behavior offm(L,t)
is a logarithmic time dependence plus a constant, as lon
L/j@1.
as

Just as in the steady-state case, we have to distinguish
five cases depending on the value ofz with respect to the
critical values3

2 and 5
2. For the sake of simplicity of writing,

we will sometimes omit the arguments ofEm andFm .
~i! z. 5

2 . This case includes the case of the pure Mulli
term. In this case we have

fm~L,t !5
D

pn2

2zj2z2m21

~2z2m21!~m112z!

3~122~m112z!/z!GS m11

z D , ~67!

Uq~L,t !

5

GS q

2
11D

2p S Dz

pn2D q/2

j~2z25!~q/2!21

3F 4~122~z25!/z!

GS 5

zD
~2z25!~52z!~12E4!

G ~q11!/2

3F ~2z23!~32z!

2GS 3

2D ~122~z23!/z!~12E2!G 1/2

, ~68!

Ū~L,t !

5
1

2pj F 2~122~z25!/z!GS 5

zD ~2z23!~32z!~12E4!

~122~z23!/z!GS 3

zD ~2z25!~52z!~12E2!
G 1/2

,

~69!

K̄~L,t !5
ADzGS 5

zD ~122~z25!/z!~12E4!

n2~2z25!~52z!
jz2~5/2!.

~70!

Therefore in this caseUq(L,t);t2@22q(2z25)#/z, U(L,t)
;t21/z, and K(L,t);t (2z25)/z for L/j@1. In the Mullins
case, withz54, the density of local minima decreases
time ast21/2 and vanishes after very long time.

~ii ! z5 5
2 . In this casef2 is still given as in case~i! but f4

is given by

f4~L,t !5
D

pn2 S ln
pj

a
1

C

z D1
D

pn2 F4S L

j
,
j

aD , ~71!

Uq~L,t !5

GS q

2
11D

2pj
S 2D

pn2D q/2F ln
pj

a
G ~q11!/2

3

H 11F ln
pj

a
G21S 2C

5
1F4D J ~q11!/2

A2~12221/5!GS 6

5
D ~12E2!

, ~72!
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Ū~L,t !5
1

2pj
F ln

pj

a
G1/2 H 11F ln

pj

a
G21S 2C

5
1F4D J 1/2

A2~12221/5!GS 6

5
D ~12E2!

,

~73!

K̄~L,t !5A D

2n2 S ln
pj

a
D H 11F ln

pj

a
G21S 2C

5
1F4D J .

~74!

One can observe the logarithmic correction for the quanti
Uq , U, andK.
s

~iii ! 3
2 ,z, 5

2 . This case includes the case of the pu
Edwards-Wilkinson term withz52,

f2~L,t !5
2D

pn2

122~z23!/z

~2z23!~32z!
GS 3

zD ~12E2!j2z23,

~75!

f4~L,t !5
D

pn2

1

522z S p

a D 522z

2
2D

pn2z

3@1222~52z!z#j2~522z!GS 522z

z D ~12E4!,

~76!
s
s.
Uq~L,t !5
1

2p
GS q

2
11D S 2D

pn2D q/2

~522z!@~q11!/2#S p

a D 2@~q11!/2#~522z!

j2~2z23!/2F ~2z23!~32z!

2~1222~32z!/z!G~3/z!~12E2!G
1/2

3F12
2

z S a

pj D 522z

~522z!@1222~52z!z#GS 522z

z D ~12E4!G ~q11!/2

, ~77!

Ū~L,t !5
1

2p F ~2z23!~32z!

2~522z!~1222~32z!/z!GS 3

zD G 1/2S p

a D ~522z!/2

j2@~2z23!/2#
^

3F12S a

pj D 522z 2

z
~522z!~1222~52z!/z!GS 522z

z D ~12E4!G1/2

~12E2!21/2, ~78!

K̄~L,t !5A D

2n2~522z! S p

a D ~522z!/zF12
2

z
GS 522z

z D S a

pj D 522z

@1222~52z!/z#~522z!~12E4!G1/2

. ~79!

From Eq.~78! one can see that in the case of the pure Edwards-Wilkinson term, withz52, the density of local minima goe
as (ja)21/2. After a long time,j→`, a→0, with ja→cons. This agrees with the steady-state and discrete lattice case

~iv! z5 3
2 ,

f2~L,t !5
D

pn2 F ln
pj

a
1

2C

3
1F2G , ~80!

f4~L,t !5
D

2pn2 S p

a D 2

2
2D

pn2zj2 ~12224/3!GS 4

3D ~12E4!, ~81!

Uq~L,t !5

GS q

2
11D

4p
S D

pn2D q/2S p

a
D q11Fpj

a
G21/2F12

8

3
GS 4

3
D S a

pj
D 2

~12224/3!~12E4!G ~q11!/2

A11F ln
pj

a
G21S 2C

3
1F2D

, ~82!

Ū~L,t !5
1

4a
F ln

pj

a
G21/2F12

8

3
GS 4

3
D S a

pj
D 2

~12224/3!~12E4!G ~q11!/2

A11F ln
pj

a
G21S 2C

3
1F2D

, ~83!

K(L,t) is given by the same equation as in case~iii !.
~v! 1,z, 3

2 . In this casef4 is given by Eq.~76! of case~iii ! andf2 is given by
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f2~L,t !5
D

pn2

1

322z S p

a D 322z

2
2D

pn2z
@1222~32z!z#j2~322z!GS 322z

z D ~12E2!, ~84!

Uq~L,t !5

GS q

2
11D

2p
S 2D

pn2D q/2A 322z

~522z!q11 S p

a
D ~522z!~q/2!11 F12S a

pj
D 522z 2z

52z
~1222~52z!/z!GS 5

z
D ~12E4!G ~q11!/2

A12S a

pj
D 322z 2z

32z
~1222~32z!/z!GS 3

z
D ~12E2!

,

~85!

Ū~L,t !5
1

2a
A 3-2z

522z

A12S a

pj
D 522z 2z

52z
~1222~52z!/z!GS 5

z
D ~12E4!

A12S a

pj
D 322z 2z

32z
~1222~32z!/z!GS 3

z
D ~12E2!

.
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IV. CONCLUSION

We have studied the density of local minima in line
Langevin equations driven by spatially quenched rand
noise. In spite of the nonuniversal character of the quanti
studied, their behavior against the variation of the mic
scopic length scales can present generic features. We
that the density of local minima vanishes in the limit of
large system size in the case of the pure Mullins term bu
finite in the case of the pure Edwards-Wilkinson term,
when both term are present. For length scales larger
A(k/n), the roughening is dominated by the Edward
Wilkinson term@17#. Therefore it follows that in the stead
ia

,

,

,

t.

y

s
-
nd

is
r
an
-

state, for large system size, the density of local minima
always given by the isotropic valuêu&5 1

4 , as long asn is
not strictly zero. Also, since the results of the quenched r
dom noise is qualitatively similar to those of the Gauss
white noise@1#, this shows that the density of local minima
robust with respect to these two types of noises.
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